4 Destructive Testing Methods Used in Pipeline Integrity Testing

The potential for dramatic and costly pipeline failures continues to be a top concern for regulatory agencies, pipeline operators and energy providers due to the risk to human life and the environment (something like that).  In 2017, the Pipeline and Hazardous Materials Safety Administration (PHMSA) issued a Final Rule that mandates several preventative and documentation processes designed to standardize the measurement, testing and assessment of pipeline inspection procedures. Non-Destructive Testing (NDT) methods are invaluable when performing field tests on existing oil and natural gas pipeline, but in some cases, Destructive Testing (DT) methods are needed to reveal more in-depth structural analysis.

read more

Mitigating Surface/Subsurface Damage Caused By Aggressive Machining Practices

One of the most critical reliability issues in aircraft engines and other subsystems is fatigue. The high stress and vibration in these systems can cause cracks that propagate once initiated. A primary contributor in crack initiation is the quality of the surfaces left behind from machining operations.

read more

Evaluating 4 Key Characteristics Critical in the Reuse of AM Powder

Manufacturers have embraced the reuse of metal powders as a key economic advantage that additive manufacturing (AM) provides. Utilizing high value metal powders like titanium would be unfeasible unless the reused feedstock can provide an adequate number of build series.

read more

4 Material Transformations Revealed by High-Temperature Fatigue Tests

Extreme temperatures in a product's operating environment affects the fatigue life of many materials. With the same cyclic or repeated stress or strain loading conditions, a material's characteristics could vary significantly at different temperatures. These conditions could be a low, moderate, or high temperatures. Cyclic loading may or may not be associated with cyclic temperature fluctuations.

read more

Why Do Your Coatings Need Bond Pull Testing?

Bond Pull testing accurately measures bond strength, as well as evaluates bond strength distributions. This helps define the reliability of bonds under stress conditions, like thermal cycles, vibration and shock.

read more

Why Did This DI Water Pipe Fail?

One of the main goals in determining the root cause of product failures is preventing future recurrences. The problems are not always obvious, so having an open mind during the analytical process helps testing professionals utilize a multi-disciplinary approach.

read more

5 Testing Methods to Determine Material Contamination

When materials don’t perform to specifications, contaminants can sometimes be the culprit. Surface and sub-surface impurities in alloys, composites, paints and coatings are often difficult to spot with the naked eye, so having a reliable testing process can determine their source to ensure predictable product characteristics.

read more

The Final 5 Testing Methods for Aerospace Composite Materials – Part 3

As with all aerospace materials, manufacturers must quality test their composites at every step of the process—from design to final product—to ensure that parts and components remain free of damage and compliant with a broad spectrum of industry standards. Composite testing also analyzes the composite’s structure to make sure that it has properly cured, as air bubbles or improper layering can cause cracks and catastrophic failures. Missing defects or design flaws in parts made from composites can severely damage your reputation and brand, not to mention potentially harm equipment, personnel, and passengers.

read more

5 (More) Testing Methods for Aerospace Composite Materials – Part 2

In few industries is reliability more emphasized. The risk associated with the failure of key components is beyond measure.  Verifying raw materials, analyzing failures and thoroughly testing new products are critical to maintaining a strong safety record.  Aerospace engineers are constantly striving to increase strength while lessening weight in structural materials, engines and systems.

read more

5 Testing Methods for Aerospace Composite Materials – Part 1

Aerospace manufacturers have relied on the use of composites for more than 40 years to produce lightweight and durable components of airplanes and other vehicles. Historically, composites supplemented secondary aircraft structures, but recent technological advances enabled their use in primary aircraft structure components including fuselage, wings, doors, nacelles, tail structures, and more. For example, composite materials form nearly 50% of the Boeing 787’s construction by weight.

read more

Which of These Top 6 Powder Characterization Tests are Right For You?

While the rapid growth of additive manufacturing (AM) technology has helped engineers in many industries create innovative new component designs, the unique characteristics of raw metallic and non-metallic powders has created significant materials testing challenges.

read more

The Origin of National Aviation Day

How to Get Quicker Corrosion Data with Electrochemical Testing



This statement is what sets IMR Test Labs apart from our competitors.  While all materials testing labs will take your samples and provide you with test results, that is where their assistance usually ends.  What elevates IMR is the access you have to our large staff of engineers, chemists, scientists, PhD's and technicians and the knowledge they deliver. 

read more


A range of high-stakes industries – such as automotive, aerospace, and power generation – require components that function reliably even in extreme temperatures. To ensure these parts can withstand temperature-driven stresses without fracturing, damage, or failure, it’s crucial for manufacturers to subject parts and components to a range of fatigue testing prior to implementation.

read more


Determining the beneficial characteristics and potential limitations of your material in advance of production can be a crucial step toward the ultimate success of your design. The presence of unexpected trace elements occasionally occurs due to environmental exposure or other factors. The presence of trace constituents may alter the predicted properties and performance of a material.

These 4 basic tests reveal a variety of results for evaluating your nonmetallic material.

Density/Specific Gravity

read more


IMR Test Labs has grown into one of the world's leading additive manufacturing materials testing labs in the world.  Our multi-disciplinary approach, consisting of chemical analysis, mechanical testing and metallurgical evaluation enables us to offer a "one-stop" testing hub for everything from raw materials to finished products.  Watch our video to be introduced to our various testing departments and the methods they employ .

read more


Leveraging our extensive experience in providing testing and analyses for additive manufacturers and their suppliers, we've compiled a comprehensive guide that delivers real-world information that can be used to determine what tests are needed to determine your materials characteristics.

While the rapid growth of additive manufacturing (AM) technology has helped engineers in many industries create innovative new component designs, the unusual nature of the necessary raw materials and the resulting printed structures has created significant materials testing challenges.

With new frontiers of complexity, materials, and applications, many additive manufacturing (AM) challenges are being overcome through the use of materials testing and analysis. This starts with the need for well characterized raw materials such as powders, pastes, and wires. SLS powders especially need continual testing due to the need to reuse unsintered powder without affecting the end product.

For example, in testing the raw powder's chemical structure, these are some of the tests that can be applied:

  • ICP-Atomic Emission Spectroscopy
  • ICP-Mass Spectrometry
  • Combustion and Inert Gas Fusion
  • C, S, N, O, H
  • OES
  • FTIR

The quality of the finished part requires the analysis of a wide array of properties, based not only on the parts application, but the AM process being used as well.  These are some of the tests used to measure a finished product's mechanical properties: 

  • Tensile - Yield - Elongation
  • Compression
  • Impact
  • Fatigue
    - Axial
    - Rotating Beam Fatigue
  • Fracture Toughness

Due to the exponential growth of additive manufacturing over the last several years, IMR Test Labs has invested in additional equipment, technology and experienced technicians to meet our customer’s needs.

We’ve expanded our capabilities in raw material characterization and finished product metal testing & analysis to help manufacturers quickly and accurately make important evaluations in their products design,  development and production phases.  IMR's increased efficiencies and dedicated resources to help our AM customers get quicker turnaround on quotes and jobs.

To download the complete version of our eBook "Materials Testing for the Additive Manufacturing Industry",  click here

read more


IMR Test Labs Louisville location has been approved by the Pratt & Whitney Group as a materials testing lab.  Jennifer Breetz, IMR-Louisville Quality Manager, said "This approval from Pratt & Whitney will enable us to accomodate materials testing for several more codes than we had in the past.  These include Chemical Analysis, RTT, ETT, Stress Rupture, Hardness, Charpy Impact, Microstructure, Grain Size, Alpha Case, Heat Treat, Semi-Quant Analysis."

read more

Top 10 additive manufacturing production platforms

When people think of additive manufacturing, many conjure up an image of high-intensity laser beams melting shapes into a bed of thinly layered metal powder.  While this is the best and most appropriate method for many types of products and parts, it's only one of many that additive manufacturers have at their disposal.  To decide on which is the best method, you have to start at the end: whatever the part or product's final application will be.

read more


One client provided us with a pair of bellows that had cracks in the welds. Our mounting, polishing, and metallographic analysis of four sections from each assembly revealed that all eight locations failed to meet the customer-supplied fillet angle requirements.

Six of the eight locations failed to meet weld size requirements. We also found nearly invisible cracks originating at the weld root in areas where no visible cracks could be seen.

Since there were no other signs of stress that could be linked to other sources, it became clear that undersized welds were the root cause of the problem. With optical stereoscopes and a scanning electron microscope (SEM), we quickly confirmed our findings. For additional examples, download our Failure Analysis Case Stude Guide

read more


We received two sections of 304 stainless steel pipe along with samples of insulation, strapping, two process fluids, and a water sample from the DI system used to mix the fluids for failure analysis.

read more


While the rapid growth of additive manufacturing (AM) technology has helped engineers in many industries create innovative new component designs, the unusual nature of the necessary raw materials and the resulting printed structures has created significant materials testing challenges. 

read more

Why “Engineering-Critical Assessments" (ECA) are Required for Pipeline Integrity Management

Pipeline operators and energy transmission companies are working to comply with the PHMSA 2017 Final Rule regarding Pipeline Integrity testing and management.

read more

is Waterjet Cutting Is the Best Method for PREPARING Samples of Non-metallic Materials?

When preparing testing samples for composites and non-metallic engineered materials, there are many advantages to waterjet cutting.

read more