Blog

4 BASIC CHEMISTRY TESTS FOR DETERMINING NONMETALLIC MATERIALS CHARACTERISTICS

Determining the beneficial characteristics and potential limitations of your material in advance of production can be a crucial step toward the ultimate success of your design. The presence of unexpected trace elements occasionally occurs due to environmental exposure or other factors. The presence of trace constituents may alter the predicted properties and performance of a material.

These 4 basic tests reveal a variety of results for evaluating your nonmetallic material.

Density/Specific Gravity

read more

SELECTING THE BEST PHYSICAL TESTING METHOD FOR NONMETALLIC MATERIALS

As with all aerospace materials, manufacturers must quality test their composites at every step of the process- from design to final product- to ensure that parts and components remain free of damage and compliant with a broad spectrum of industry standards.  Composite testing also analyzes the composites structure to make sure that it has properly cured, as air bubbles or improper layering can cause cracks and catastrophic failures.  Missing defects or design flaws in parts made from composites can severely damage a company’s reputation and brand, not to mention potential harm to equipment, personnel, and passengers.

read more

VIEW IMR'S ADDITIVE MANUFACTURING TESTING CAPABILITIES VIDEO

IMR Test Labs has grown into one of the world's leading additive manufacturing materials testing labs in the world.  Our multi-disciplinary approach, consisting of chemical analysis, mechanical testing and metallurgical evaluation enables us to offer a "one-stop" testing hub for everything from raw materials to finished products.  Watch our video to be introduced to our various testing departments and the methods they employ .

IMRTestLabs_PromoVideo_Version2
read more

MATERIALS TESTING METHODS FOR ADDITIVE MANUFACTURING

Leveraging our extensive experience in providing testing and analyses for additive manufacturers and their suppliers, we've compiled a comprehensive guide that delivers real-world information that can be used to determine what tests are needed to determine your materials characteristics.

While the rapid growth of additive manufacturing (AM) technology has helped engineers in many industries create innovative new component designs, the unusual nature of the necessary raw materials and the resulting printed structures has created significant materials testing challenges.

With new frontiers of complexity, materials, and applications, many additive manufacturing (AM) challenges are being overcome through the use of materials testing and analysis. This starts with the need for well characterized raw materials such as powders, pastes, and wires. SLS powders especially need continual testing due to the need to reuse unsintered powder without affecting the end product.

For example, in testing the raw powder's chemical structure, these are some of the tests that can be applied:

  • ICP-Atomic Emission Spectroscopy
  • ICP-Mass Spectrometry
  • Combustion and Inert Gas Fusion
  • C, S, N, O, H
  • OES
  • FTIR

The quality of the finished part requires the analysis of a wide array of properties, based not only on the parts application, but the AM process being used as well.  These are some of the tests used to measure a finished product's mechanical properties: 

  • Tensile - Yield - Elongation
  • Compression
  • Impact
  • Fatigue
    - Axial
    - Rotating Beam Fatigue
  • Fracture Toughness

Due to the exponential growth of additive manufacturing over the last several years, IMR Test Labs has invested in additional equipment, technology and experienced technicians to meet our customer’s needs.

We’ve expanded our capabilities in raw material characterization and finished product metal testing & analysis to help manufacturers quickly and accurately make important evaluations in their products design,  development and production phases.  IMR's increased efficiencies and dedicated resources to help our AM customers get quicker turnaround on quotes and jobs.

To download the complete version of our eBook "Materials Testing for the Additive Manufacturing Industry",  click here

read more

IMR-LOUISVILLE EARNS PRATT & WHITNEY ACCREDITATION

IMR Test Labs Louisville location has been approved by the Pratt & Whitney Group as a materials testing lab.  Jennifer Breetz, IMR-Louisville Quality Manager, said "This approval from Pratt & Whitney will enable us to accomodate materials testing for several more codes than we had in the past.  These include Chemical Analysis, RTT, ETT, Stress Rupture, Hardness, Charpy Impact, Microstructure, Grain Size, Alpha Case, Heat Treat, Semi-Quant Analysis."

read more

Top 10 additive manufacturing production platforms

When people think of additive manufacturing, many conjure up an image of high-intensity laser beams melting shapes into a bed of thinly layered metal powder.  While this is the best and most appropriate method for many types of products and parts, it's only one of many that additive manufacturers have at their disposal.  To decide on which is the best method, you have to start at the end: whatever the part or product's final application will be.

read more

FAILURE ANALYSIS OF A BELLOW DUE TO UNDERSIZED WELDS

One client provided us with a pair of bellows that had cracks in the welds. Our mounting, polishing, and metallographic analysis of four sections from each assembly revealed that all eight locations failed to meet the customer-supplied fillet angle requirements.

Six of the eight locations failed to meet weld size requirements. We also found nearly invisible cracks originating at the weld root in areas where no visible cracks could be seen.

Since there were no other signs of stress that could be linked to other sources, it became clear that undersized welds were the root cause of the problem. With optical stereoscopes and a scanning electron microscope (SEM), we quickly confirmed our findings. For additional examples, download our Failure Analysis Case Stude Guide

read more

FAILURE ANALYSIS OF STEAM TURBINE WHEEL DUE TO HOT CAUSTIC STRESS CORROSION CRACKING

We received two sections of 304 stainless steel pipe along with samples of insulation, strapping, two process fluids, and a water sample from the DI system used to mix the fluids for failure analysis.

read more

MATERIALS CHARACTERIZATION PROBLEMS IN ADDITIVE MANUFACTURING TESTING

While the rapid growth of additive manufacturing (AM) technology has helped engineers in many industries create innovative new component designs, the unusual nature of the necessary raw materials and the resulting printed structures has created significant materials testing challenges. 

read more

Why “Engineering-Critical Assessments" (ECA) are Required for Pipeline Integrity Management

Pipeline operators and energy transmission companies are working to comply with the PHMSA 2017 Final Rule regarding Pipeline Integrity testing and management.

read more

is Waterjet Cutting Is the Best Method for PREPARING Samples of Non-metallic Materials?

When preparing testing samples for composites and non-metallic engineered materials, there are many advantages to waterjet cutting.

read more

How To Identify Different Types of Corrosion

Corrosion risks can be largely mitigated through proper raw material and protective coating testing before incorporating them into your product's design and manufacturing processes.

read more

Determining Biocompatibility Through Cytotoxicity Testing

In the medical industry, contamination is more than an inconvenience—it can be deadly. To ensure biocompatibility of medical devices, tools, and implants, we have developed a comprehensive list of analytical methods to identify potential threats. These processes support the research and practices that create medical marvels every day.

read more

How Composite Testing Can Help You Mitigate Failures and Recalls

Fiber-reinforced composites are now widely used across a range of industries as they provide a lightweight alternative to metals and other heavier raw materials. However, manufacturers that use composites must ensure that such materials can meet the requirements of a given application. Failing to do so risks real-world failure, which can have disastrous consequences resulting in injury, recalls, or even litigation.

read more

Testing Your Thermal Spray Coatings

For equipment that operates in harsh or demanding environments, thermal spray coatings offer a secondary layer of protection against environmental conditions and contamination on new parts, or a restorative layer to extend the service life of a worn component.

read more

Exploring Different Types of Fatigue Failure

Fatigue, one of the most common mechanisms leading to component failure, refers to the cracking or deformation that occurs in materials as a result of exposure to stress cycles. This stress comes in many different forms, such as compression, expansion, tension, or torsion. If undergoing significant cyclical stress, even highly ductile materials may be subject to fatigue failure over time.

read more

Seven Common Failure Mechanisms in Non-Metallic Materials

As non-metallic fabrication materials such as polymers, ceramics, fiber-reinforced composites, and coatings continue to see increased usage in manufacturing applications where metallic materials are too heavy or too susceptible to corrosion, it’s important that stakeholders ranging from design engineers to procurement professionals understand the various problems and limitations that can arise if materials are not carefully selected. This understanding can be achieved through comprehensive failure analysis testing.

read more

Investigative Methods for Determining Failure Causes in Non-Metallic Materials

There are myriad reasons why a non-metallic material might fail; These vary widely based on the specific material, the application for which it is intended, and the environment to which it is exposed. Thorough fatigue testing is the best way to determine in advance if a material will be suitable for specific operational conditions. When necessary, failure analysis can also determine why a design failed after the fact.

read more

Fatigue Testing for Extreme Temperature Applications

A range of high-stakes industries – such as automotive, aerospace, and power generation – require components that function reliably even in extreme temperatures. To ensure these parts can withstand temperature-driven stresses without fracturing, damage, or failure, it’s crucial for manufacturers to subject parts and components to a range of fatigue testing prior to implementation.

read more

Corrosion Testing

Choosing the wrong coatings for manufacturing parts and components can place significant strain on your bottom line by leading to continuous repairs, replacements, and downtime.

read more

The Essentials of Additive Manufacturing

Although the first 3D printer was invented in 1983, original models were so cost prohibitive and functionally limited that most manufacturers couldn’t realize a significant enough return on investment to make the purchase worthwhile. Today, however, 3D printers bring highly specialized, cost-effective designs to life using a comprehensive list of materials, including a wide variety of metals, plastics, epoxies, ceramics.

read more

The Importance of Cytotoxicity Testing for Safe Patient Outcomes

In the medical industry, contamination is more than an inconvenience—it can be deadly. In order to ensure top biocompatibility performance from medical devices, tools, and implants, testing labs have developed a long list of analytical methods to identify potential threats. These processes support the research and practices that create medical marvels every day.

read more

Pin Fatigue Failure Analysis

Failure Analysis of Pipes from Stress Corrosion Cracking

We received two sections of 304 stainless steel pipe along with samples of insulation, strapping, two process fluids, and a water sample from the DI system used to mix the fluids for failure analysis.

read more

Hydrogen Embrittlement Failure Analysis

One of our clients was dealing with a component that fractured during routine testing. After internal reviews proved inconclusive, it called on IMR to conduct a failure analysis to determine the problem.

read more